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ABSTRACT:  

Background: DNA methylation (DNAm) age acceleration (AgeAccel) has been shown to be 

predictive of all-cause mortality but it is unclear what functional aspect/s of ageing it 

captures. We examine associations between four measures of AgeAccel in adults aged 45-87 

years and physical and cognitive performance and their age-related decline.  

Methods:  AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno and AgeAccelGrim were 

calculated in the Medical Research Council National Survey of Health and Development 

(NSHD), National Child Development Study (NCDS) and TwinsUK. Three measures of 

physical (grip strength, chair rise speed and forced expiratory volume in one second[FEV1]) 

and two measures of cognitive (episodic memory and mental speed) performance were 

assessed.  

Results: AgeAccelPheno and AgeAccelGrim, but not AgeAccelHannum and 

AgeAccelHorvath were related to performance in random effects meta-analyses (n=1388-

1685). For example, a one year increase in AgeAccelPheno/AgeAccelGrim was associated 

with a 0.01ml[95%CI:0.01,0.02]/0.03ml[95%CI:0.01,0.05] lower mean FEV1. In NSHD, 

AgeAccelPheno and AgeAccelGrim at 53 years were associated with age-related decline in 

performance between 53 and 69 years as tested by linear mixed models (p<0.05). In a subset 

of NSHD participants(n=482), there was little evidence that change in any AgeAccel measure 

was associated with change in performance conditional on baseline performance.  

Conclusions: We found little evidence to support  associations between the first generation of 

DNAm-based biomarkers of ageing and age-related physical or cognitive performance in mid-

life to early old age. However, there was evidence that the second generation biomarkers, 

AgeAccelPheno and AgeAccelGrim, could act as makers of an individual’s health-span as 

proposed. 
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INTRODUCTION 

The worldwide demographic shift towards an ageing population is accompanied by an 

increase in life expectancy; however the quality of these extra years remains unclear1-3. 

Ageing is a dynamic and complex process characterised by an array of cellular and molecular 

changes which accumulate over the life course to manifest as impaired function and an 

increased susceptibility to multiple chronic diseases and death4. The heterogeneity in age-

related disease and functional capability cannot be explained by chronological age (CA) 

alone5. Therefore, a measure of biological age that can capture the ageing process beyond 

what is represented by CA may identify people at risk of functional impairment, providing an 

insight into their health-related quality of life. 

Numerous biomarkers of ageing have been proposed including epigenetic biomarkers based 

on DNA methylation (DNAm)6-10.  Over recent years, a number of DNAm-based biomarkers 

of ageing have been developed8,11-15. The first generation of these biomarkers were developed 

to predict CA and include the blood-based Hannum and the multi-tissue Horvath algorithms 

which show a high correlation with, and small deviation from CA12,13.  More recently, second 

generation DNAm-based biomarkers of ageing have been developed with the specific aim of 

identifying CpGs that capture lifespan and healthspan in addition to those displaying changes 

with chronological time. One of these, the DNAm-based Phenotypic Age (PhenoAge), 

identified CpGs that predict a composite measure of mortality-related clinical physiological 

measures and CA14. Another began by generating surrogate DNAm biomarkers of age-related 

physiological measures and smoking pack years then regressed time-to-death on these DNAm 

surrogates and CA to produce the DNAm GrimAge15. 

Having a higher DNAm age independent of CA (denoted age acceleration, AgeAccel), in all 

of these biomarkers has been shown to be associated with an increased risk of premature all-
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cause mortality, cardiovascular disease and cancer, with AgeAccelPheno and AgeAccelGrim 

showing stronger associations than AgeAccelHannum or AgeAccelHorvath14-21. However, it 

is unclear what functional aspects of ageing these DNAm-based biomarkers of ageing 

capture, and whether they can act as a proxy for an individual’s health beyond mortality and 

disease.  

The maintenance of physical and cognitive performance are vital components of healthy 

ageing and poorer performance has been associated with higher subsequent mortality 

rates22,23. Therefore examining associations between DNAm-based biomarkers of ageing and 

age-related measures of performance and their decline may provide insight into the validity of 

these as biomarkers of healthy ageing. Previous evidence from a small number of studies has 

been inconsistent and focused on the first generation of DNAm-based biomarkers24-28. Two 

studies examining AgeAccelHannum and AgeAccelHorvath and change in physical and 

cognitive performance were either sex-specific, had small sample sizes and/or did not 

examine a wide range of performance measures25,27. Another study examining a range of 

performance measures among 70 year olds observed cross-sectional but not longitudinal 

associations between AgeAccelHorvath, AgeAccelHannum and poorer grip strength, lung 

function and cognitive performance24.  

We used data from the Medical Research Council National Survey of Health and 

Development (NSHD;1946 British birth cohort), National Child Development Study 

(NCDS;1958 British birth cohort) and TwinsUK Registry to examine associations between 

four DNAm-based biomarkers of ageing (AgeAccelHannum, AgeAccelHorvath, 

AgeAccelPheno, AgeAccelGrim) at ages 45 to 87 years and a range of physical and cognitive 

performance measures. We also examine if these DNAm-based biomarkers of ageing are 

associated with decline over 16 years of follow-up in any of the performance measures in 

NSHD. 
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METHODS 

Participants 

Participants from three cohorts (NSHD, NCDS and TwinsUK) have all been described in 

detail previously29-32. Eligible participants had information on DNAm and at least one 

measure of physical and cognitive performance at the same or a later time point.  In NSHD, 

DNAm and physical and cognitive performance were measured when participants were 

53(n=1375) and 60-64 years(n=672). Of the participants with DNAm at 53 years, 973 also 

had physical and cognitive performance measured at 69 years. Participants from NCDS had 

DNAm and lung function measured at 45 years and cognitive performance measured at 50 

years(n=240). For TwinsUK, 120 monozygotic female twins (60 twin pairs) had DNAm 

profiled when aged 46-87 years and markers of physical performance measured up to seven 

years before or after. The mean absolute differences between when DNAm was measured and 

when grip strength, chair rise speed and lung function was measured was 3, 0.7 and 0.4 years 

respectively.   

DNAm-based biomarkers of ageing  

Blood samples for each cohort were taken as previously described29,32,33. DNAm was 

measured at >850 000 CpG sites in each cohort using Infinium MethylationEPIC BeadChips 

and processed using the ENmix package34 in R35 to obtain methylation beta-values. Quality 

control procedures were applied (supplementary material).  We estimated four DNAm-based 

biomarkers of ageing in each cohort: DNAm AgeHannum, DNAm AgeHorvath, DNAm 

PhenoAge, and DNAm GrimAge12-15. We calculated these four DNAm-based biomarkers of 

ageing using available software (https://labs.genetics.ucla.edu/horvath/dnamage/) with the 

normalisation option and advanced analysis for blood samples. Following the notation of 

previous publications, CA-independent DNAm-based biomarkers were calculated within the 
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software and denoted as AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno and 

AgeAccelGrim, all in units of a year. Estimated blood cell counts (naïve and exhausted CD8+ 

T-lymphocytes, CD4+ T-lymphocytes, B cells, natural killer cells, monocytes and 

granulocytes) were also calculated within this software.  

Ageing outcomes 

We selected three measures of physical (grip strength, chair rise speed and lung function 

[forced expiratory volume in one second, FEV1]) and two measures of cognitive performance 

(episodic memory and mental speed); each of which were available in NSHD and at least one 

other study. All these performance measures were available in NSHD. Cognitive performance 

and FEV1 were measured in NCDS, while TwinsUK collected the three physical performance 

measures. Details of how each of these measures were assessed is outlined in supplementary 

material.  

Covariates 

We selected the covariates a priori based on previous studies24,27 to include in sensitivity 

analyses: body mass index(BMI), height(m), smoking status, and socioeconomic position 

indicated by either occupational social class or income. We used covariates measured at the 

same time as the blood samples. For longitudinal analyses in NSHD, we included time-

varying BMI and smoking status measured at 53, 60-64y and 69 years. Details of how each of 

these covariates were measured is outlined in supplementary material 

Statistical analyses 

All analyses were conducted using the four AgeAccel biomarkers: further mention of 

AgeAccel refers to all biomarkers unless specified.  
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First, we examined associations between AgeAccel and each performance measure within 

each cohort. Linear regression models were used in NSHD and NCDS and linear mixed 

models in TwinsUK, including a random effect for twin pair to account for familial effects. 

We adjusted for sex (in NSHD and NCDS) and CA (in months).  We tested for interaction 

between AgeAccel and sex by including a multiplicative term. We tested for the presence of 

non-linear associations by including a quadratic term of AgeAccel in regression models.  

Results from within-cohort analyses were then combined using random effects meta-analyses. 

AgeAccel was available in NSHD at two different time points; 53 and 60-64 years. Therefore, 

we subsequently conducted the primary meta-analyses using data collected at 53 years with a 

sensitivity analysis including data from 60-64 years.   

Second, in NSHD we used linear mixed models with random intercepts and slopes to examine 

if physical and cognitive performance measures between 53 and 69 years were associated 

with AgeAccel at 53 years. We included AgeAccel, sex, and CA (in months) at the 53 year 

measurement as fixed effects. We then tested interactions between time and AgeAccel at 53 

years using a log-likelihood ratio test to determine if it was associated with rate of decline in 

the performance measures.   

Third, in NSHD we examined if change in AgeAccel between 53 and 60-64 years was 

associated with change in performance between 53 and 60-64 years. Linear regression models 

with Δperformance (i.e. performance at 60-64 years–performance at 53 years) as the outcome 

and ΔAgeAccel as the exposure were used. Models were adjusted for performance at 53 

years. 

Sensitivity analyses were performed repeating each set of analysis with adjustment for BMI, 

height, smoking status, and social class or income. Since the blood-based AgeAccel measures 

are correlated with cell composition14,15,17  and cell-composition changes with age, we 
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explored cell-intrinsic17 associations by adjusting for estimated cell counts (naïve and 

exhausted CD8+ T-lymphocytes, CD4+ T-lymphocytes, B cells, natural killer cells, 

monocytes and granulocytes) in sensitivity analyses.  

RESULTS 

Table 1 outlines characteristics of the study participants. The correlation coefficients between 

the different AgeAccel measures were similar within each study. AgeAccelHannum, 

AgeAccelHorvath and AgeAccelPheno were moderately correlated (ranging from r=0.33 for 

AgeAccelHannum and AgeAccelPheno in TwinsUK to r=0.58 for AgeAccelHannum and 

AgeAccelPheno in NCDS).  AgeAccelGrim was also moderately correlated with 

AgeAccelPheno within each study (ranging from r=0.36 in NSHD 60-64 years to r=0.39 to 

r=0.40 in all other studies). However, AgeAccelGrim had weak correlations with 

AgeAccelHannum within each study (r=≤0.25) and no correlation with AgeAccelHorvath 

(r=≤0.06 in NSHD at 60-64 years, NCDS and TwinsUK r=0.13 in NSHD at 53 years). 

(Table one here) 

Associations between AgeAccel and physical and cognitive performance across the three 

cohorts 

We found no evidence for associations between AgeAccelHannum or AgeAccelHorvath and 

physical or cognitive performance in meta-analyses (figures 1-5, supplementary tables 1-2). 

There was evidence of a non-linear association (plinearity=0.04) and sex interaction 

(pinteraction=0.01) between AgeAccelHorvath and FEV1. When stratified by sex, effect sizes for 

the association between AgeAccelHorvath and FEV1 were in opposite directions. In women, 

higher AgeAccelHorvath was associated with lower FEV1, but in men with better FEV1 

(supplementary table 2).  
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Higher AgeAccelPheno was associated with weaker grip strength, lower FEV1 and slower 

mental speed (Supplementary table 3 and figures 1-5). Higher AgeAccelGrim was associated 

with lower FEV1, poorer episodic memory and slower mental speed (Supplementary table 4 

and figures 1-5). There was no evidence for a sex interaction with AgeAccelPheno or 

AgeAccelGrim and any of the performance measures. Estimates for the association between 

AgeAccelGrim and physical and cognitive performance tended to be stronger than 

AgeAccelPheno (supplementary tables 3-4, figures 1-5). For example a one year increase in 

AgeAccelPheno was associated with -0.97[95%CI: -1.65 to -0.29] mean reduction in number 

of letters scanned while AgeAccelGrim with a -2.05[95%CI: -2.81 to -1.29] reduction. 

Adjustment for covariates attenuated the association between AgeAccelPheno and grip 

strength but did not affect the overall conclusions for other associations (supplementary 

figures 6-10). Adjusting for cell composition did not affect the majority of the results; 

however the association between AgeAccelGrim and chair rise speed became stronger due to 

the study estimates becoming less heterogeneous (supplementary figures 1-5).  

There were no major differences in conclusions for AgeAccelHannum and AgeAccelHorvath 

between meta-analyses including NSHD participants at 53 years and the ones including 

participants at 60-64 years with only minor differences in estimates and evidence for a non-

linear association between AgeAccelHannum and mental speed (plinearity=0.04, supplementary 

table 1) and no evidence for non-linearity or sex interactions between AgeAccelHorvath and 

FEV1 (supplementary table 2).  Overall, estimates for the associations between 

AgeAccelPheno and performance measures were weaker when data on NSHD participants 

from age 60-64 years compared with data from 53 years in meta-analyses. This was due to the 

weaker associations observed at 60-64 years compared with 53 years. Conversely, estimates 

for the associations between AgeAccelGrim and performance measures were stronger when 

including NSHD participants at 60-64 years compared with 53 years. 
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Longitudinal associations between AgeAccel at 53 years and change in physical and cognitive 

performance between 53 and 69 years in NSHD  

There was an overall decline in mean physical and cognitive performance between 53 and 69 

years in NSHD (supplementary table 5). There was no evidence that AgeAccelHorvath at 53 

years was related to any physical or cognitive performance measure between 53 and 69 years 

(table 2).  Higher AgeAccelHannum at 53 years was associated with poorer physical 

performance and episodic memory over the 16 year period, but not with the rate of decline 

(pinteraction ≥0.17). Higher AgeAccelPheno and AgeAccelGrim at 53 years were also associated 

with a poorer chair rise speed and cognitive performance measures at 53 and 69 years (table 

2), but not with decline. For grip strength, higher AgeAccelPheno at 53 years was related to 

poorer performance at all ages, while higher AgeAccelGrim was not associated with 

performance at 53 years but was associated with greater decline between 53 and 69 years. 

Thus by age 69 years, a 1 year higher AgeAccelGrim was associated with a -0.25kg [95% CI: 

-0.37 to -0.14] weaker grip strength. There was evidence that higher AgeAccelPheno and 

AgeAccelGrim at 53 years were associated with lower FEV1 at 53 years and with a faster 

decline where the negative association slightly strengthened over time. By 69 years a 1 year 

higher AgeAccelPheno at 53 years was associated with a -0.016ml [95%CI: -0.021 to -0.010] 

lower mean FEV1 compared with a -0.010ml [95%CI: -0.015 to -0.005] at 53 years. Similarly 

for AgeAccelGrim at 53 years the association was -0.02ml[95% CI: -0.03 to -0.02] at 69 years 

compared with -0.04 [95% CI: -0.05 to -0.04] at 53 years. Adjusting for cell composition did 

not affect the results for AgeAccelHorvath, AgeAccelPheno or AgeAccelGrim but did 

attenuate the results for AgeAccelHannum (supplementary table 6). Adjustment for covariates 

attenuated the associations but did not change the overall conclusions for AgeAccelPheno or 

AgeAccelGrim (supplementary table 7).    

(Table 2 here) 
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Associations between change in AgeAccel and change in physical and cognitive performance 

between 53 and 60-64 years in NSHD 

In NSHD 482 participants had AgeAccel information at both 53 and 60-64 years. There was 

some evidence for an association between greater change in ΔAgeAccelPheno and change in 

chair rise speed (table 3), however this was attenuated after accounting for cell composition 

and additional covariates (supplementary table 8 and supplementary table 9). There was no 

association between any of the other ΔAgeAccel measures and Δphysical/cognitive 

performance between the ages of 53 and 60-64 years (table 3). However adjusting for cell 

composition strengthened associations between ΔAgeAccelGrim and Δgrip strength and 

Δchair rise speed (supplementary table 8).  

(Table 3 here) 

DISCUSSION 

We found evidence of relationships between the second generation of DNAm-based 

biomarkers of ageing (AgeAccelPheno and AgeAccelGrim) and physical and cognitive 

performance among participants aged 45 to 87 years that were not observed for the first 

generation biomarkers (AgeAccelHannum and AgeAccelHorvath). In addition, associations 

between AgeAccelGrim and subsequent decline in performance was also observed. 

Identifying a reliable and valid biomarker of ageing has the potential to progress the 

understanding of, and slow the rate of ageing36. While AgeAccel has been heralded as a 

promising ageing biomarker6, evidence to date has focused on the first generation of DNAm-

based biomarkers and has been sparse and inconsistent. Findings from a previous cross-

sectional study examining associations between AgeAccelHannum or AgeAccelHorvath  in 

486 MZ twins aged 55 to 79 years and general cognitive function were in line with our null 

results25. In contrast to our findings, a separate study of middle-aged female MZ twins (n=24 
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twin pairs) found some evidence for a cross-sectional association between higher 

AgeAccelHorvath and lower grip strength26.  

Our results for the first generation of DNAm-based biomarkers of ageing should also be 

compared with previous data from the 1936 Lothian birth cohort24. Marioni et al. observed 

associations between higher AgeAccelHorvath and poorer physical and cognitive 

performance at 70 years. Similar to our findings, they found no association between 

AgeAccelHorvath and decline in performance between 70 and 76 years. Although we did not 

find any associations for the first generation of DNAm-based biomarkers of ageing in our 

meta-analyses, the direction of the effects are consistent (except for FEV1 where we observed 

an estimate of 0.001 [95% CI: -0.013, 0.011]) with data from the Lothian birth cohort. We 

included a larger sample size than the Lothian birth cohort (n=1388-1685 vs. n=~920); 

however most of our participants were younger and it is possible that the cross-sectional 

association may get stronger with increasing age. Another study examined DNAm 

AgeHannum and DNAm AgeHorvath in a younger cohort (n=818)28. The authors observed 

modest associations between DNAm AgeHannum at 38 years and measures of cognitive 

function but not grip strength or for DNAm AgeHorvath and any marker of performance28. 

The authors found no evidence of an association between change in DNAm AgeHannum 

between the ages of 26 and 38 years and measures of cognitive or physical performance at 39 

years, although change in DNAm AgeHorvath was weakly correlated with cognitive 

performance (r=0.11).  

One previous study examined the association between AgeAccelHorvath and physical 

performance using data from a smaller sub-sample of NSHD women27. In this study no 

associations between AgeAccelHorvath measured using blood samples at 53 years and grip 

strength or chair rise time at 53 or 60-64 years were observed; unlike results from our study, 

AgeAccelHorvath at baseline (53 years) was modestly associated with a greater decline in 
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grip strength between 53 and 60-64 years. The 152 women in the previous paper were not 

included in our study because DNAm was measured using the Infinium Methylation450k 

BeadChips while our study used Infinium MethylationEPIC BeadChips. In addition, half of 

these women were selected because they developed breast cancer and thus findings in this 

subsample may not be representative of all women.   

The second-generation DNAm-based biomarkers of ageing have been developed more 

recently with the specific aim of acting as a biomarker for healthspan (AgeAccelPheno) and 

lifespan (AgeAccelGrim).  While AgeAccelPheno and AgeAccelGrim have been associated 

with age-related disease, and mortality14,15, to our knowledge, no study to date has examined 

their associations with physical of cognitive performance.  Although all correlations were in 

the expected direction, it is unclear why we observed associations between AgeAccelPheno 

and AgeAccelGrim for some but not all age-related performance measures. Over 95 per cent 

of the participants included in our meta-analyses are aged 65 or younger. It is possible that the 

variation in both age-related performance and AgeAccel in this age group is small, however 

decline in age-related performance has been shown to be evident prior to 65 years37-41.  

Furthermore, older participants tend to have a lower AgeAccel than younger participants, 

indicating the presence of survivor bias42,43, which would be less evident in our younger 

sample. In sensitivity analysis for our meta-analysis, including data from NSHD participants 

at 60-64 years rather than 53 years, weakened the associations between AgeAccelPheno and 

performance measures because cross-sectional associations were weaker at the older age in 

NSHD.  

Both AgeAccelPheno and AgeAccelGrim, as well as being associated cross-sectionally with 

performance measures were also associated with decline in FEV1 over a 16 year period. Lung 

function has been shown to decline in NSHD from as early as 43 years,44 which might explain 

why we observe such a relationship in FEV1 but not other performance measures in our 
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relatively younger participants. In addition, AgeAccelGrim at 53 years, although not 

associated with weaker grip strength cross-sectionally, was associated with grip strength by 

69 years. This suggests that even if DNAm-based biomarkers of ageing in early mid-life do 

not reflect all current performance measures, they may be related to subsequent decline. 

The second generation healthspan and lifespan biomarkers use differences in physiological 

status among individuals of the same CA to construct the score, unlike the first generation 

which use CA only. In line with findings for age-related disease15, we observed the strongest 

associations for age-related performance for AgeAccelGrim. DNAm AgeHannum is based on 

71 CpGs while DNAm AgeHorvath with 353, DNAm PhenoAge with  513 CpGs, and DNAm 

GrimAge with 1,030 CpGs. Of the 513 CpGs for DNAm PhenoAge, 41 overlapped with 

DNAm AgeHorvath and with 6 DNAm AgeHannum.  Furthermore, DNAm AgeHorvath was 

the only one of the biomarkers that was based on multiple-tissues, with the others using whole 

blood. Since both blood cell composition and DNAm changes with age 17,45,  the blood-based 

DNAm-based biomarkers of age also reflect age-related changes in cell-type composition14,15. 

A previous study found that measures of AgeAccelHorvath and AgeAccelHannum that 

incorporate blood cell counts give stronger associations with all-cause mortality compared 

with  measures independent of blood cell counts17.  Adjusting for cell composition in our 

study generally weakened associations, but did not affect the overall conclusions except for 

associations between AgeAccelHannum and performance in NSHD. In line with previous 

findings that AgeAccelHannum measures that incorporate blood cell counts outperform 

measures that exclude them for mortality prediction, our observed associations were 

considerably attenuated.  

To our knowledge, this is the largest study of AgeAccel and physical and cognitive 

performance to date and the only one that has included the second generation of DNAm-based 

biomarkers of healthspan and lifespan. The main strengths of our study were the inclusion of 
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participants from three British cohorts, the examination of a range of objective measures of 

physical and cognitive performance and, the longitudinal performance measures available 

from three time points in NSHD.  However, the sample size remains relatively small and we 

may still lack power to detect small associations. Despite having three time points for 

performance measures for longitudinal analyses, this was only possible in NSHD and 

therefore may lack power. Furthermore, when assessing change in AgeAccel and change in 

performance over the same 10 year period in NSHD, only two time points were available 

which adds additional measurement error.  

Although participants across the three cohorts are generally representative of the white British 

population29-32, selection bias for this specific cross-cohort study may have influenced the 

observed associations. Participants from these cohorts were selected if they had information 

on DNAm, outcomes of interest and a range of other health and age-related variables. If 

having a lower AgeAccel and higher age-related performance was associated with 

participation, this could have introduced collider bias where estimates may be positively 

biased46. Finally, the performance measures were assessed slightly differently between the 

cohorts potentially introducing some heterogeneity, although there was little variation in 

observed effect sizes between the cohorts in most cases.  For the meta-analyses, all 

associations in NSHD were cross-sectional but in NCDS cognitive performance were 

measured five years after DNAm age and performance was measured up to seven years before 

or after DNAm age in TwinsUK. It is possible that physical and cognitive performance 

changed during this period introducing some error in the observed effect sizes. In conclusion, 

our study found evidence to support the second generation of DNAm-based biomarkers of 

healthspan and lifespan as a proxy for age-related physical or cognitive performance in mid- 

to early old age, particularly for lung function. However, these findings should be replicated 
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and current validated measures of physical and cognitive performance should not be replaced 

by these DNAm based-biomarkers.  
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Figure 1.  Association between (A) AgeAccelHannum (B) AgeAccelHorvath (C) 

AgeAccelPheno (D) AgeAccelGrim and grip strength adjusted for sex and age  

Figure 2.  Association between (A) AgeAccelHannum (B) AgeAccelHorvath (C) 

AgeAccelPheno (D) AgeAccelGrim and chair rise speed adjusted for sex and age  

Figure 3. Association between (A) AgeAccelHannum (B) AgeAccelHorvath (C) 

AgeAccelPheno (D) AgeAccelGrim and FEV1 adjusted for sex and age 

Figure 4. Association between (A) AgeAccelHannum (B) AgeAccelHorvath (C) 

AgeAccelPheno (D) AgeAccelGrim and standardised total number of words recalled adjusted 

for sex and age 

Figure 5. Association between (A) AgeAccelHannum (B) AgeAccelHorvath (C) 

AgeAccelPheno (D) AgeAccelGrim and total number of letters scanned adjusted for sex and 

age 
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Table 1. Characteristics of study members by cohort at time of DNA extraction 

 NSHD 53y NSHD 60-64y  NCDS TwinsUK  

 Male 

n=655 

Female 

n=720 

Male 

n=345 

Female 

n=327 

Male 

n=112 

Female 

n=128 

Female 

n=120 

Year/s at DNA extraction 1999 2006-2010 2003 2008-2015 

Age (y)  53.4 (0.2) 53.5 (0.2) 63.0 (1.1) 63.1 (1.0) 45.1 (0.36) 45.1 (0.37) 64.6 (9.3) 

DNAm ageHannum  (y) 43.1 (4.3) 41.6 (4.0) 53.4 (4.5) 50.4 (3.8) 36.1 (3.2) 35.7 (3.6) 51.8 (8.5) 

AgeAccelHannum 0.79 (4.28) -0.66 (3.95) 1.50 (4.43) -1.53 (3.69) 0.25 (3.16) -0.22 (3.59) -0.06 (3.65) 

DNAm ageHorvath  (y) 50.7 (4.2) 49.6 (3.9) 58.9 (4.7) 57.2 (4.1) 45.1 (3.5) 44.0 (3.9) 58.7 (8.1) 

AgeAccelHorvath 0.54 (4.15) -0.54 (3.86)   0.79 (4.65) -0.83 (4.00) 0.58 (3.47) -0.51 (3.94) -0.07 (4.0) 

PhenoAge  (y) 39.0 (5.6) 38.9 (5.6) 48.9 (5.9) 47.7 (5.8) 37.9 (5.6) 38.6 (5.0) 56.8 (10.8) 

AgeAccelPheno 0.05 (5.60) -0.02 (5.60) 0.57 (5.86) -0.84 (5.76) -0.37 (5.60) 0.32 (4.90) 0.47 (5.74) 

GrimAge  (y) 58.0 (5.14) 55.3 (4.81) 64.6 (4.6) 61.1 (4.3) 48.17 (4.92) 46.70 (4.43) 59.8 (7.8) 

AgeAccelGrim 1.40 (5.14) -1.28 (4.79) 1.53 (4.4) -1.67 (4.10) 0.82 (4.91) -0.71 (4.39) -0.19 (3..02) 

Body Mass index (kg/m2) 27.4 (4.0) 27.3 (5.0) 28.2 (4.2) 28.0 (4.9) 25.2 (3.6) 24.0 (4.3) 26.8 (5.2) 

Height  (m) 1.75 (0.07) 1.61 (0.06) 1.75 (0.07) 1.62 (0.06) 1.77 (0.07) 1.64 (0.07) 1.62 (0.07) 

% current smokers 22.9 25.4 10.5 12.6 19.6 24.2 5.0 

% Non-manual social 

class/income ≥£25,000*  

63.6 69.8 66.9  74.1 70.5 69.5 58.1 

Grip strength (kg) 48.3 (12.6) 27.7 (8.3) 45.6 (11.6) 26.4 (7.6) - - 24.0 (6.6) 

Chair rise speed 

(stands/min) 

32.0 (10.0) 30.0 (9.3) 26.0 (7.0) 24.3 (6.9) - - 34.7 (11.0) 

FEV1 3.26 (0.59) 2.31 (0.45) 3.07 (0.68) 2.18 (0.44) 3.84 (0.68) 2.68 (0.67) 2.28 (0.52) 

Number of words 

recalled 

23.2 (6.1) 24.5 (6.2) 23.6 (6.0) 25.6 (5.7) 6.59 (1.52) 6.78 (1.37) - 

Total number of letters 

scanned 

275.2 (73.8) 291.8 (76.0) 258.0 (71.4) 272.2 (69.5) 342.78 

(105.5) 

348.13 (96.10) - 

Values are mean(SD) unless stated. AgeAccel: Age acceleration 
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* Occupational social class for NSHD and NCDS, income for TwinsUK 
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Table 2. Association between DNAm age acceleration at 53 years and longitudinal change in performance (53-69 years) in NSHD  

 Grip strength, kg  

(n=1,362) 

Chair rise speed, stands/min  

(n=1,334) 

FEV1 (ml) 

(n=1,359) 

Number of words  

(n=1,358) 

Total number of letters 

scanned  

(n=1,368) 

 Estimate  

(95% CI) 

p-value Estimate 

(95% CI) 

p-value Estimate 

(95% CI) 

p-value Estimate 

(95% CI) 

p-value Estimate 

(95% CI) 

p-value 

AgeAccelHann

um 

-0.12 

(-0.22, -0.02) 

0.03 -0.101 

(-0.197, -0.005) 

0.04 -0.009 

(-0.015, -0.002) 

0.01 -0.074 

(-0.146, -0.001) 

0.04 -0.55 

(-1.38, 0.29) 

0.20 

           

AgeAccelHorva

th 

-0.06 

(-0.17, 0.04) 

0.27 -0.05 

(-0.18, 0.08) 

0.49 0.0003 

(-0.0065, 0.0071) 

0.94 -0.02 

(-0.09, 0.06) 

0.68 -0.34 

(-1.20, 0.52) 

0.44 

           

AgeAccelPheno -0.14 

(-0.22, -0.07) 

<0.001 -010 

(-0.17, -0.03) 

0.01 -0.010* 

(-0.015, -0.005) 

<0.001 -0.11 

(-0.16, -0.06) 

<0.001 -1.15 

(-1.76, -0.54) 

<0.001 

AgeAccelPheno

Xtime  

    -0.003** 

(-0.001, <-0.000) 

0.04     

           

AgeAccelGrim 0.004* 

(-0.110, 0.118) 

0.92 -0.23 

(-0.32, -0.15) 

<0.001 -0.024* 

(-0.029, -0.018) 

<0.001 -0.24 

(-0.29, -0.18) 

<0.001 -2.17 

(-2.87, -1.48) 

<0.001 

AgeAccelGrim

Xtime 

-0.016** 

(-0.025, -0.008) 

<0.001   -0.0010** 

(-0.0014, -0.0007) 

<0.001     

All models adjusted for sex and age at 53 years. 

Estimates represent difference in outcome which is constant between 53 and 69 years for a one year increase in AgeAccel at 53 years unless p-value from log-likelihood 

ratio test comparing models fit with an interaction term for time to models without the interaction term = ≤0.05 then:  

*estimates represent the average difference in outcome at 53 years (i.e. at the intercept) for a one year increase in AgeAccel at 53 years  

**estimates represent the average difference in the  linear slope (per year time) between from 53 ant 69 years for a one year increase in AgeAccel at 53 years 
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Table 3  Association between change in DNAm age acceleration and change in age-related performance between 53 years and 60-64y conditional on baseline performance at 53 

 
ΔGrip strength, kg 

(n=435) 

ΔChair rise, stands/min 

(n=418)    

Δ FEV1  

(n=451) 

ΔNumber of words recalled  

(n=456) 

ΔTotal number of letters 

scanned  

(n=464) 

 
Estimate 

(95% CI) 
p-value 

Estimate  

(95% CI) 
p-value 

Estimate  

(95% CI) 
p-value 

Estimate  

(95% CI) 
p-value 

Estimate  

(95% CI) 
p-value 

 

 
     

 

ΔAgeAccelHannum 
0.19 

(-0.07, 0.44) 
0.15 

0.03 

(-0.14, 0.20) 
0.74 

0.006  

(-0.007, 0.019) 
0.34 

-0.01 

(-0.13, 0.11) 
0.88 

0.49  

(-1.19, 2.17) 
0.56 

ΔAgeAccelHorvath  
-0.06 

(-0.28, 0.16) 
0.59 

-0.12 

(-0.27, 0.03) 
0.12 

-0.002  

(-0.013, 0.008) 
0.66 

0.06 

(-0.05, 0.17) 
0.25 

1.31 

(-0.17, 2.79) 
0.08 

ΔAgeAccelPheno 
0.03 

(-0.14, 0.20) 
0.72 

-0.12 

(-0.24, -0.01) 
0.04 

0.006 

(-0.003, 0.015) 
0.17 

0.05 

(-0.04, 0.13) 
0.25 

0.16 

(-0.98, 1.31) 
0.78 

ΔAgeAccelGrim 
-0.04 

(-0.18, 0.11) 
0.60 

-0.06 

(-0.16, 0.04) 
0.23 

0.006  

(-0.001, 0.013) 
0.09 

0.04 

(-0.03, 0.11) 
0.27 

-0.91 

(-1.87, 0.05) 
0.06 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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